> 747. Infrared Absorption of Substituents in Heteroaromatic Systems. Part III. ${ }^{1}$ Amino-, Methylamino-, and Dimethylamino-compounds.

By A. R. Katritzky and R. A. Jones.
The absorption due to the groups $\mathrm{NH}_{2}, \mathrm{NHMe}$, and NMe_{2} for 57 compounds is recorded. Tentative assignments of the frequencies to specific molecular modes are made, and the dependence of the positions and intensities of the bands on molecular structure is discussed.

Following our work on ethers ${ }^{2}$ and amides, ${ }^{\mathbf{1}}$ we now report (Tables $\mathbf{l}-3$) the substituent absorption for amino-, methylamino-, and dimethylamino-compounds. Compounds of all these types had previously been examined, the NH stretching modes receiving most attention (for reviews see refs. $3 a$ and $3 b$).

The $3300 \mathrm{~cm} .^{-1}$ Region.-The amino-compounds show the NH antisymmetrical and symmetrical stretching bands at $3520-3420 \mathrm{~cm} .^{-1}(10-80) *$ and $3420-3325 \mathrm{~cm} .^{-1}(15-$ 100) respectively (Table 1, cols. 1 and 2). For the para- and ortho-substituted anilines, the position of each band rises as the substituent becomes more electron-accepting; the apparent extinction coefficients also increase, those of the symmetrical vibration the more markedly. For the meta-substituted anilines the positions and intensities vary less; they are 3480 $3430 \mathrm{~cm} .^{-1}(15-35)\left[3458 \pm 18 \mathrm{~cm} .^{-1}(20 \pm 8)\right]$ and $3400-3370 \mathrm{~cm} .^{-1}(20-35) \quad[3380 \pm$

* Round brackets signify apparent molecular extinction coefficients, and square brackets signify arithmetical means and standard deviations; see footnote on J., 19593500.
${ }^{1}$ Part II, Katritzky and R. A. Jones, J., 1959, 2062.
${ }^{2}$ Part I, Katritzky and Coats, J., 1959, 2067.
${ }^{3}$ (a) Bellamy, "The Infrared Spectra of Complex Molecules," 2nd Edition, Methuen, London, 1958, pp. 248-259. (b) R. N. Jones and Sandorfy in Weissberger," Techniques of Organic Chemistry, Vol. IX. Chemical Applications of Spectroscopy," Interscience, London, 1956, pp. 509-531.
$\left.10 \mathrm{~cm} .^{-1}(25 \pm 8)\right]$ (except that the intensities for m-nitroaniline are higher). These results follow the findings of earlier workers. ${ }^{4-6}$

For the heterocyclic compounds, the positions are in the order of electron-accepting power of the rings, viz., $\mathrm{Ph}<3 \mathrm{P}<2 \mathrm{P} \sim 4 \mathrm{P}<2 \mathrm{PO}$.* The positions for the pyridines agree with those found by Angyal et al. $;^{7 a}$ Goulden suggested ${ }^{7 b}$ that the measurements in-
dicated considerable $=\stackrel{+}{\mathrm{N}} \mathrm{H}_{2}$ character in 2- and 4-amino-pyridine. Mason ${ }^{8}$ recently related the positions and intensity of these bands for heterocyclic amines with their molecular structure. The intensities are higher for 4 - than for 3 -amino-pyridine; the pyridine ring is known to withdraw electrons more readily from the 4 - than the 3 -position of the ring. The relatively low extinction coefficients for 2 -aminopyridine and its 1 -oxide are probably connected with the intramolecular hydrogen bonding in these compounds; ${ }^{9,10}$ the ε_{A} values for the other heterocyclic compounds are probably affected by intermolecular hydrogen bonding (the values found by Mason ${ }^{8}$ in dilute solution were considerably higher). In general, despite the sodium chloride prism (poor resolution) and the use of a standard concentration, our results are in reasonable agreement with others: e.g., aniline showed bands at $3454 \mathrm{~cm} .^{-1}(23)$ and $3388 \mathrm{~cm} .^{-1}(30)$ in chloroform with a calcium fluoride prism; ${ }^{11}$ the intensities were $c a$. (25) and (30), ${ }^{3 b}(20)$ and (28), ${ }^{4}$ and $c a$. (30) and (35) ${ }^{4 b}$ in carbon tetrachloride (lithium fluoride prism).

For the methylamino-compounds the position of the NH stretch (Table 2, col. 1) at $3450-3420 \mathrm{~cm} .^{-1}$ also becomes higher as the ring becomes more electron-accepting: ${ }^{12}$ $\mathrm{Ph}<3 \mathrm{P}<4 \mathrm{P} \sim 4 \mathrm{PO}$. The position is relatively low in the 2 -substituted pyridine and its 1-oxide, although these rings are strongly electron-accepting, ${ }^{12}$ probably because of internal hydrogen bonding. 4 -Methylaminopyridine 1 -oxide shows (in 0.2 M -solution) an additional band at $3240 \mathrm{~cm} .^{-1}(75)$ due to the intramolecularly hydrogen-bonded species (cf. discussion in ref. 10). For methylaniline $3430 \mathrm{~cm} .^{-113}$ and $3433 \mathrm{~cm} .^{-1}(39)^{14}$ were previously given.

The $2800 \mathrm{~cm}^{-1}$ Region. -The symmetrical CH stretching frequency (possibly perturbed by Fermi resonance) reported ${ }^{15}$ for compounds with NMe or NMe_{2} groups directly attached to an aromatic system at ca. $2800 \mathrm{~cm} .^{-1}(30-70)$ is found (Table 2, col. 2; Table 3, col. 1) at $2870-2800 \mathrm{~cm} .^{-1}(25-60)$. It is more distinct for compounds with rings of low electronattracting power (phenyl, substituted phenyl, and 3 -pyridyl) in agreement with previous work, ${ }^{15}$ e.g., the band is absent for N-methylamides, ${ }^{1,15 b}$ in which a strongly electronattracting group is attached to the nitrogen atom.

The 1650-1480 cm. ${ }^{-1}$ Region.-The NH_{2} scissor deformation is shown at $1632-1613$ $[1622 \pm 4] \mathrm{cm} .^{-1}$ (Table 1, col. 3) except for 2 -aminopyridine 1 -oxide where strong intramolecular hydrogen bonding apparently shifts the mode to $c a .1590 \mathrm{~cm} .{ }^{-1}$. For the para-substituted compounds, increase in the electron-attracting character of the substituent raises frequencies somewhat ($1613 \rightarrow 1628 \mathrm{~cm} .^{-1}$) and intensities markedly ($60 \rightarrow 420$). ortho-Substituted compounds show a similar intensity variation ($95 \rightarrow 440$) but the positions are more constant at $1626-1616 \mathrm{~cm} .^{-1}[1620 \pm 3]$. For the meta-substituted anilines the positions and intensities vary less: $1632-1620 \mathrm{~cm} .^{-1}(175-260)\left[1623 \pm 3 \mathrm{~cm} .^{-1}(220 \pm\right.$ $30)$]. As expected, the intensity is higher for 4 - than for 3 -aminopyridine; the intensities

* $\mathrm{P}=$ pyridyl; $\mathrm{PO}=$ pyridine oxide.
${ }^{4}$ Califano and Moccia, Gazzetta, (a) 1956, 86, 1014; (b) 1957, 87, 58; (c) 1957, 87, 805.
${ }^{5}$ Flett, Trans. Faraday Soc., 1948, 44, 767.
${ }^{6}$ Krueger and Thompson, Proc. Roy. Soc., 1957, A, 243, 143.
${ }^{2}$ (a) Angyal and Werner, $J ., 1952,2913$; (b) Goulden, $J ., 1952,2939$.
${ }^{8}$ Mason, J., 1958, 3619.
- Short, J., 1952, 4584.
${ }^{10}$ Gardner and Katritzky, J., 1957, 4375.
${ }^{11}$ Fuson, Josien, Powell, and Utterback, J. Chem. Phys., 1952, $20,145$.
12 Katritzky, Quart. Rev., 1956, 10, 395.
${ }^{13}$ Richards and Burton, Trans. Faraday Soc., 1949, 45, 874.
${ }_{14}$ Russell and Thompson, $J ., 1955,483$.
${ }^{15}$ (a) Hill and Meakins, J., 1958, 760; (b) Braunholtz, Ebsworth, Mann, and Sheppard, J., 1958, 2780.

Table 1. Amino-compounds.

Aniline and heterocyclic amines (ring is given)

35	Ph	3455	20	3375	25	1622	185	1268	55	g
36	4 P m	3480	30	3400	45	1625	310	1314	45	d
				3380				1282	60	f
37	3 P	3460	20	3380	25	1622	125	1250	50	
38	2P	3470	20	3390	35	1614	465	1317	90 40	e
39	2 PO	3500	25	3360	20	1592*		1340	25	c
3	2PO	3500	25	3360	20	1592	45	1255 *	25	

No.	Ring	1		2		3		4		5		6		7		8		9		10
		$\underset{\text { stretch }}{\mathrm{NH}}$		$\mathrm{N}-\mathrm{Me}$		NH in plane def.		$\mathrm{N}-\mathrm{Me}$ Me sym. bend.				Ring-N CN stretch				$\mathrm{N}-\mathrm{Me}$ Me rock		N -Me CN stretch		
		$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	cm. ${ }^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	cm. ${ }^{-1}$	$\varepsilon_{\text {a }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	a
1	Ph	3420	30	2820	25	1478	50	(-)		1425	30	1320	110	1263	75	1154	45	1065*	20	g
2	4 P	3460	45	2850 *	40	1480	35	1460	30	1417	20	1342	75	1315	80	1152	20	1068	35	
3	3P	3430	30	2825	30	1500	110	1460	45	1408	40	$\left\{\begin{array}{l}1340^{*} \\ 1317\end{array}\right.$	15 55	1302	70	1149	40	1069	10	f
4	2P	3440	30	(-)		(-1)		1457	40	1410*	55	1324	45	1285	55	1152	50	1070	15	
5	4 PO	3450	55	(-)		1498	120	1456*	20	(-)		1335	25	1308	15	1155	50	1065	35	b
6	2 PO	3340	40	(-)		-		(-)		1419	35	1336	25	1267*	20	1157	+150	1070	35	c

Table 3. Dimethylamino-compounds.
\bullet

[^0]8

* Shoulder.
$\left(\mathrm{CHCl}_{3}\right)$ region obscured by solvent. \S Measured in 1 mm . cell because of poor solubility. Absence of absorption. (一) Region obscured by other absorption.
0
3
Ring-N
CN stretch $\mathrm{cm} .^{-1} \quad \varepsilon_{\mathrm{A}}$
$\begin{array}{lr}1332 & 60 \\ 1343 & 105\end{array}$
$\begin{array}{ll}1343 & 105 \\ 1360 & 240\end{array}$
$\begin{array}{ll}1357 & 240 \\ 1359 & 220\end{array}$

0
0
0
0
0

욱
1

	NMe_{2}	
Me		
$\mathrm{cm} .^{-1}$	ε_{A}	
1158	$\mathrm{~cm}^{-1}$	
1155	1137	
1189	35	1130
1187	130	1130
1154	75	1124
$(-)$	$(-)$	
1173^{*}	60	$(-)$
1179	35	1108
1169	35	$(-)$
1174	20	$(-)$
$1181 *$	120	$(-)$
$1176 \ddagger 280$	$1143 \ddagger$	

TABLE 2. Methylamino-compounds
of the heterocyclic compound are probably not directly comparable with the benzenoid compound because of intramolecular hydrogen bonding. This band has been previously reported at $1640-1560,{ }^{3 b, 16,17}$ and at $1650-1590 \mathrm{~cm} .^{-1}{ }^{3}{ }^{3 a}$ Eight aromatic amines were shown ${ }^{4}$ to absorb at $1631-1615 \mathrm{~cm} .^{-1}(\mathrm{~s})$.

A band at $1500-1478 \mathrm{~cm} .^{-1}$ (35-110, but apparently absent in No. 6) for the methyl-amino-compound (Table 2; col. 3) is possibly the NH in-plane deformation, to which Hadži and Škrbljak ${ }^{18}$ assigned a band near $1500 \mathrm{~cm} .^{-1}$ for secondary aromatic amines.

The $1460-1400 \mathrm{~cm}^{-1}$ Region.-The methylamino-compounds show bands at $1460-$ $1457 \mathrm{~cm} .^{-1}(30-45)\left[1459 \pm 2 \mathrm{~cm} .^{-1}(40 \pm 10)\right]$ and $1425-1408 \mathrm{~cm} .^{-1}(20-40)[1417 \pm$ $\left.7 \mathrm{~cm} .{ }^{-1}(30 \pm 10)\right]$ (Table 2, cols. 4 and 5). These are assigned to the antisymmetrical and symmetrical N-methyl CH bending modes, respectively. The positions are higher than those $\left[1422 \pm 4,1369 \pm 11 \mathrm{~cm} .{ }^{-1}\right]$ for amides of the type $\mathrm{Ar} \cdot \mathrm{NMe} \cdot \mathrm{CO} \cdot \mathrm{R},{ }^{1}$ but close to those 1465-1442, $1414-1401 \mathrm{~cm} .{ }^{-1}$ for amides R•CO•NHMe. ${ }^{19}$

The dimethylamino-compounds absorb at $1449-1442 \mathrm{~cm} .^{-1}(45-95)\left[1446 \pm 3 \mathrm{~cm} .^{-1}\right.$ (70 ± 20)] (Table 3, col. 2); this is probably also a methyl CH bending mode.

The 1400-1240 cm. ${ }^{-1}$ Region.-Previous work ${ }^{17,3 a}$ had indicated that the CN stretching mode caused absorption at $1340-1250,1350-1280$, and $1360-1310 \mathrm{~cm} .^{-1}$ for primary, secondary, and tertiary aromatic amines, respectively. Six aromatic amines absorbed ${ }^{4 c}$ at $1288-1276 \mathrm{~cm} .^{-1}$ but m-chloro- and m-bromo-aniline each showed three bands at 1320 $-1261 \mathrm{~cm} . .^{-1}$. A band at $1262-1241 \mathrm{~cm} .^{-1}$ in seven secondary aromatic amines was assigned ${ }^{18}$ to this mode, but the published curves all show a second band at higher frequencies.

All the compounds now studied show one or two strong or medium bands (Table 1, col. 4; Table 2, cols. 6, 7; Table 3, col. 3) which are assigned to the N-ring CN stretching mode.

The position of the band should depend on the electron-accepting character of the ring; when this is increased, greater mesomerism, greater double-bond character, and therefore a higher frequency, should result. This is shown for the para-substituted anilines (Table 1, nos. $1-15$) for which the frequency varies, $1260-1303 \mathrm{~cm} .^{-1}$; the intensity is ($65-155$) $[(105 \pm 30)]$.

The meta-substituted anilines (except for the methyl, and possibly the nitro-compounds) show a band at $1329-1315[1320 \pm 6] \mathrm{cm} .^{-1}(20-90)[(50 \pm 20)]$; for several compounds a second band is shown at a lower frequency; this is similar to the ring-oxygen stretching frequency in meta-substituted anisoles and phenetoles; ${ }^{2}$ the reason is unknown. As expected, the aminopyridines and 1-oxides all absorb at higher frequencies than aniline (Table 4), the intensity is ($25-90$) ; a weaker band at $1254-1250 \mathrm{~cm} .^{-1}$ is also shown.

For the dimethylamino-compounds, the band occurs at $1380-1332 \mathrm{~cm} .^{-1}$; for corresponding pairs, $16-76[55 \pm 23] \mathrm{cm} .^{-1}$ higher than in the amino-compounds. The intensity is $(40-155)[(95 \pm 35)]$ except in the vinyl compounds (Nos. 3-5) where it is ($220-240$). For the benzenoid compounds a para-amino-group lowers the frequency and para-vinyl and -nitro-groups raise it as expected. All the heterocyclic compounds absorb at higher frequencies than dimethylaniline (Table 4).

Two bands of comparable intensity at $1342-1320$ and $1315-1263 \mathrm{~cm} .^{-1}$ are shown for all the methylamino-compounds; presumably the CN stretching mode is split by interaction with another mode. The mean frequency has been taken as that for the CN stretching mode; it is $20-50[35 \pm 15] \mathrm{cm} .^{-1}$ higher than that for the corresponding amino-compound, and higher for each heterocyclic compound than for methylaniline (Table 4). Each component of the doublet has an intensity of (45-110) [(75 $\pm 15)]$ in methylamino-benzene and -pyridine, but (15-25) in methylaminopyridine 1 -oxides.

[^1]The increments in Table 4 (except those for 2-methylaminopyridine and its 1-oxide; these exceptions are possibly explained by proximity effects) indicate that the electronaccepting power of the various rings is in the order: $\mathrm{Ph}<3 \mathrm{P}<4 \mathrm{PO} \sim 4 \mathrm{P} \sim 2 \mathrm{P}<2 \mathrm{PO}$, which is in good agreement with other evidence. ${ }^{2}$

Table 4. Nitrogen-ring stretching bands. Increments in wave-numbers over those for the corresponding benzenoid compound.

	4 P	3P	2P	4 PO	2 PO
Amino	46	14	49	-	72
Methylamino ${ }^{\text {a }}$	37	18	13	30	10
Dimethylamino	37	15	26	36	64

The 1200—1100 cm^{-1} Region.-A band (Table 2, col. 8) for the methylamino-compound at 1157-1149 cm..$^{-1}(20-50)\left[1153 \pm 2 \mathrm{~cm}^{-1}(40 \pm 15)\right]$ and two bands (Table 3, cols. 5 and 6) for the dimethylamino-compounds at $1189-1154 \mathrm{~cm} .^{-1}(20-130)$ [1171 $\pm 14 \mathrm{~cm} .^{-1}$ (60 ± 35)] and $1143-1108 \mathrm{~cm} .^{-1}(30-70)\left[1126 \pm 10 \mathrm{~cm} .^{-1}(50 \pm 20)\right]$ (absent in No. 9) are probably due to $\mathrm{N}-\mathrm{CH}_{3}$ methyl rocking frequencies by analogy with those found for N -methylamides. ${ }^{1}$

The 1100-900 cm. ${ }^{-1}$ Region.-For dimethylamine the CNC antisymmetric and symmetric stretching modes occur at 1082 and $930 \mathrm{~cm} .^{-1} .^{20}$ Bands probably due to these modes are found for the dimethylamino-compounds at $1063-1051 \mathrm{~cm} .^{-1}(15-55)[1059 \pm$ $\left.4 \mathrm{~cm} .^{-1}(35 \pm 15)\right]$ and $953-942 \mathrm{~cm}^{-1}(25-170)\left[947 \pm 4 \mathrm{~cm}^{-1}(75 \pm 45)\right]$ (Table 3, cols. 7, 8). For certain amidines containing the $\cdot \mathrm{NMe}_{2}$ group these bands were found ${ }^{21}$ at $1082-1081(\mathrm{~ms})$ and $947-936(\mathrm{~m}) \mathrm{cm}^{-1}$.

For the methylamino-compounds a band tentatively assigned to the N-methyl CN stretching frequency (Table 2, col. 9) is found at $1070-1065 \mathrm{~cm} .^{-1}(10-35)\left[1068 \pm 2 \mathrm{~cm} .^{-1}\right.$ $(25 \pm 15)]$; Hadži and Škrbljak found ${ }^{18}$ this band near $1060 \mathrm{~cm} .^{-1}$ and suggested that it was the CN stretching or the N -Me rocking mode. The NH_{2} wagging mode ${ }^{4 c}$ near $1050 \mathrm{~cm} .^{-1}$ is apparently too weak to be detected under our conditions.

Other Bands.-Nearly all the remaining bands could be assigned to the ring or other substituents present; many of them have been published, and references are given in Tables l-3. The small proportion of bands which could not be correlated are given as footnotes in Tables 1-3.

Experimental.-See Part I ${ }^{2}$ for details.
Dyson Perrins Laboratory, Oxford.
University Chemical Laboratory, Cambridge.
[Received, April 9th, 1959.]
${ }^{20}$ Edsall, J. Chem. Phys., 1937, 5, 225.
${ }^{21}$ Fabian, Delaroff, and Legrand, Bull. Soc. chim. France, 1956, 287.

[^0]: ,
 Ph phenyl; P substituted pyridine; PO substituent pyridine 1 -oxide (position of substituent denoted by a numeral) at 839 (40). (n) Extra band at 1475 (45).

[^1]: ${ }^{16}$ Thompson, $J_{\text {., }}$ 1948, 328.
 ${ }^{17}$ Colthup, J. Opt. Soc. Amer., 1950, 40, 397.
 ${ }^{18}$ Hadži and Skrbljak, J., 1957, 843.
 ${ }^{19}$ Miyazawa, Shimanouchi, and Mizushima, J. Chem. Phys., 1956, 24, 408; J. Chem. Soc. Japan, 1956, 77, 171.

