747. Infrared Absorption of Substituents in Heteroaromatic Systems. Part III.¹ Amino-, Methylamino-, and Dimethylamino-compounds.

By A. R. KATRITZKY and R. A. JONES.

The absorption due to the groups NH₂,NHMe, and NMe₂ for 57 compounds is recorded. Tentative assignments of the frequencies to specific molecular modes are made, and the dependence of the positions and intensities of the bands on molecular structure is discussed.

FOLLOWING our work on ethers ² and amides,¹ we now report (Tables 1-3) the substituent absorption for amino-, methylamino-, and dimethylamino-compounds. Compounds of all these types had previously been examined, the NH stretching modes receiving most attention (for reviews see refs. 3a and 3b).

The 3300 cm.-1 Region.-The amino-compounds show the NH antisymmetrical and symmetrical stretching bands at 3520-3420 cm.⁻¹ (10-80) * and 3420-3325 cm.⁻¹ (15-100) respectively (Table 1, cols. 1 and 2). For the para- and ortho-substituted anilines, the position of each band rises as the substituent becomes more electron-accepting; the apparent extinction coefficients also increase, those of the symmetrical vibration the more markedly. For the meta-substituted anilines the positions and intensities vary less; they are 3480-3430 cm.⁻¹ (15-35) [3458 \pm 18 cm.⁻¹ (20 \pm 8)] and 3400-3370 cm.⁻¹ (20-35) [3380 \pm

* Round brackets signify apparent molecular extinction coefficients, and square brackets signify arithmetical means and standard deviations; see footnote on $J_{., 1959}$ 3500.

Part II, Katritzky and R. A. Jones, J., 1959, 2062.
 Part I, Katritzky and Coats, J., 1959, 2067.
 (a) Bellamy, "The Infrared Spectra of Complex Molecules," 2nd Edition, Methuen, London, 1958, pp. 248-259. (b) R. N. Jones and Sandorfy in Weissberger, "Techniques of Organic Chemistry, Vol. IX. Chemical Applications of Spectroscopy," Interscience, London, 1956, pp. 509-531.

10 cm.⁻¹ (25 \pm 8)] (except that the intensities for *m*-nitroaniline are higher). These results follow the findings of earlier workers.⁴⁻⁶

For the heterocyclic compounds, the positions are in the order of electron-accepting power of the rings, viz., Ph $< 3P < 2P \sim 4P < 2PO.*$ The positions for the pyridines agree with those found by Angyal et al.;^{7a} Goulden suggested ^{7b} that the measurements in-

dicated considerable = $\ddot{N}H_2$ character in 2- and 4-amino-pyridine. Mason⁸ recently related the positions and intensity of these bands for heterocyclic amines with their molecular structure. The intensities are higher for 4- than for 3-amino-pyridine; the pyridine ring is known to withdraw electrons more readily from the 4- than the 3-position of the The relatively low extinction coefficients for 2-aminopyridine and its 1-oxide are ring. probably connected with the intramolecular hydrogen bonding in these compounds; 9,10 the ε_A values for the other heterocyclic compounds are probably affected by intermolecular hydrogen bonding (the values found by Mason⁸ in dilute solution were considerably higher). In general, despite the sodium chloride prism (poor resolution) and the use of a standard concentration, our results are in reasonable agreement with others: e.g., aniline showed bands at 3454 cm.⁻¹ (23) and 3388 cm.⁻¹ (30) in chloroform with a calcium fluoride prism;¹¹ the intensities were ca. (25) and (30),^{3b} (20) and (28),⁴ and ca. (30) and (35) ^{4b} in carbon tetrachloride (lithium fluoride prism).

For the methylamino-compounds the position of the NH stretch (Table 2, col. 1) at 3450—3420 cm.⁻¹ also becomes higher as the ring becomes more electron-accepting:¹² $Ph < 3P < 4P \sim 4PO$. The position is relatively low in the 2-substituted pyridine and its 1-oxide, although these rings are strongly electron-accepting,¹² probably because of internal hydrogen bonding. 4-Methylaminopyridine 1-oxide shows (in 0.2M-solution) an additional band at 3240 cm.⁻¹ (75) due to the intramolecularly hydrogen-bonded species (cf. discussion in ref. 10). For methylaniline 3430 cm.^{-1 13} and 3433 cm.⁻¹ (39) ¹⁴ were previously given.

The 2800 cm.⁻¹ Region.—The symmetrical CH stretching frequency (possibly perturbed by Fermi resonance) reported ¹⁵ for compounds with NMe or NMe₂ groups directly attached to an aromatic system at ca. 2800 cm.⁻¹ (30-70) is found (Table 2, col. 2; Table 3, col. 1) at 2870-2800 cm.⁻¹ (25-60). It is more distinct for compounds with rings of low electronattracting power (phenyl, substituted phenyl, and 3-pyridyl) in agreement with previous work,¹⁵ e.g., the band is absent for N-methylamides,^{1,15b} in which a strongly electronattracting group is attached to the nitrogen atom.

The 1650—1480 cm.⁻¹ Region.—The NH₂ scissor deformation is shown at 1632—1613 $[1622 \pm 4]$ cm.⁻¹ (Table 1, col. 3) except for 2-aminopyridine 1-oxide where strong intramolecular hydrogen bonding apparently shifts the mode to ca. 1590 cm.⁻¹. For the para-substituted compounds, increase in the electron-attracting character of the substituent raises frequencies somewhat $(1613 \rightarrow 1628 \text{ cm}.^{-1})$ and intensities markedly $(60 \rightarrow 420)$. ortho-Substituted compounds show a similar intensity variation ($95 \rightarrow 440$) but the positions are more constant at 1626—1616 cm.⁻¹ [1620 \pm 3]. For the *meta*-substituted anilines the positions and intensities vary less: 1632–1620 cm.⁻¹ (175–260) [1623 \pm 3 cm.⁻¹ (220 \pm 30)]. As expected, the intensity is higher for 4- than for 3-aminopyridine; the intensities

- * P = pyridyl; PO = pyridine oxide.
- ⁴ Califano and Moccia, Gazzetta, (a) 1956, 86, 1014; (b) 1957, 87, 58; (c) 1957, 87, 805.
- 5 Flett, Trans. Faraday Soc., 1948, 44, 767.
- Krueger and Thompson, Proc. Roy. Soc., 1957, A, 243, 143. (a) Angyal and Werner, J., 1952, 2913; (b) Goulden, J., 1952, 2939.
- Mason, J., 1958, 3619.
 Short, J., 1952, 4584. 9

- ¹⁰ Gardner and Katritzky, J., 1957, 4375.
 ¹¹ Fuson, Josien, Powell, and Utterback, J. Chem. Phys., 1952, 20, 145.
- ¹² Katritzky, Quart. Rev., 1956, 10, 395.
 ¹³ Richards and Burton, Trans. Faraday Soc., 1949, 45, 874.
- ¹⁴ Russell and Thompson, J., 1955, 483.

¹⁵ (a) Hill and Meakins, J., 1958, 760; (b) Braunholtz, Ebsworth, Mann, and Sheppard, J., 1958, 2780.

TABLE 1. Amino-compounds. Note NH₂ stretch NH₂ def. CN stretch a antisym. sym. cm.-1 cm.-1 cm.-1 cm.-1 ε ε ε۸ ٤⊾ para-Substituted anilines (substituent is given) NMe₂ h, i h, j OMe 50 h, j OEt $\mathbf{25}$ h Me Cl $\mathbf{25}$ h 7 Br $\mathbf{25}$ h 3480 * $\mathbf{20}$ (CHCl₃) 4P § h 3P2P $\mathbf{275}$ e, h 80 2PO § (CHCl₃) 3450 * h N:NPh h CN CO₂Et $\mathbf{25}$ h СОМе $\mathbf{25}$ h h NO₂ meta-Substituted anilines k NH, j, k { OMe 1313 * j, k { OEt 1310* 1306 * k { Me k { Cl $\mathbf{25}$ k { Br $\mathbf{22}$ 4P $\mathbf{25}$ k 2Pе, k k { 2PO 3450 * CF₃ 3470 * 1317 * k 1332 * k { NO₂ ortho-Substituted anilines NH, ı OMe $\mathbf{25}$ l { Cl l { \mathbf{Br} $\mathbf{25}$ { Me l { \mathbf{Ph} 1285 * 1317 * ı CO₂Me l { NO₂ Aniline and heterocyclic amines (ring is given) \mathbf{Ph} $\mathbf{25}$ g d { 4P ** f { 3P $\mathbf{25}$ e { 2P1614 ± 465 $\mathbf{25}$ С { 2PO $\mathbf{25}$ $\mathbf{20}$ 1592 * 45 1255 * $\mathbf{25}$

	10		a	ø	f		ç Q		lote	a		i, h	Ø	ч ч	q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ion. 192, and
2. Methylamıno-compounds.	6	h	εA	20 35	10	15	35 35		4		v	~	0.00				bsorpt b) p. 2 xtra b
		N-Me Strete	۲.	65 * 68	69	020	65 70		œ	h sym.	ω Γ	80	8 6 5 10 6 8 10 6		1 7 7 7	501 10 12 12 12 12 12 12 12 12 12 12 12 12 12) (m) E
	80	S	cn	20	10	10	201		2	Me ₂ stretc	cm.	94	96 40	96 76	95 94	95 95 95	ed by c $J_{\cdot, -11}$
		-Me rock	εA	45 20	40	50	± 150		2	o-n-c.	εv	25	40 35 7	55 55	3 5 10	$15 \\ 25 \\ 60 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 1$	obscur apers: ing pa
		We V	cm	cm. ⁻¹ 1154 1152	1149	1152	1155 1157		2) antis	cm1	1051	1057 1063	1058	1063 1063	$1053 \\ 1063 \\ 1055 $	egion (). ing pa
	7		εA	75 80	70	55	$15 \\ 20$		5 6		εA	70	30 65 7	8	30	95	(-) R umeral follow 58, (l)
		ch S	m1	m1 1263 315	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1285	1308 1267 *	ds.				37	$\left[\begin{array}{c} 30\\ 5\\ 3\\ 5\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	ĴĴ	<u>ه</u> (آ	43 1 () 1	absorption. a hoted by a nu nutres in the 62 , (k) p. 205
		Ring-1 N stret	U T	0 20		ົ້	85 25 1 86 25 1			NMe ₂ e rock	cn	11	===	;== =	Ξ	1	
	9	5	-1 ε	20 11 21		4				άĂ	εA	75	130 130	99 (] *	35	± 20 ± 280	nt den co-wo
			cm.	132		132	133 133	unoqu			cm1	1158	1189 1187	, 1173	1179 1169	1174 1181 1181	Abser y . Abser Abser Abser, (j)
	õ	Me isym. Id	εv	30 20	40	. 55	.) 35	10-con		~	:m. ⁻¹ ε _A		001	10	35 35	35	ls. — Iubility of sul zky ar ris paj
		Me ant ber	cm1	1425 1417	1408	1410 *	$^{+}_{-19}$	lami	4			Ĵ	330 * ()	(-)	346 320	318 326	o band oor sol ssition Katrit (i) tl
	4		εv	$\begin{pmatrix} - & \epsilon_{A} \\ (-) & 0 \\ 60 & 30 \end{pmatrix}$	45	9	20	(—) 8. Dimethy	ŝ	ſ	۹ ۲	0	- 200		~~~	/ . 	n of tw se of p ide (pc id by 0, 205]
		N-Me de syn bend.	7. 1		09	57	<u> </u> 26 *			ing-N stretc	ω T	2	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1885 1987	0 151 9 9	900 12,2,4 12,2,4	osition becaus $1 - 0 \times 1$ $1 + 0 \times 1$ 1
ABLE		А	cn	14	14	14	14	BLE 3		S'R S'R	сп.	133	$134 \\ 136 \\ 136 \\ 135$	135	138 135	$136 \\ 137 \\ 135$	er-imp vridine een pu
Ē	e	I in ane ef.	εA	50 35	110	+) + 120 - TAI		° b	εA	45	105	() 80	95 45	$^{+}_{165}$	he sup 1 mm ent p ave b 55; J		
		Ϋ́́Ξ ^Φ	cm	1478 1480	1500		1498		61	Me	cm1	1448	1444 1449 // Hr	1442	1448 1446) -) 1447 ‡ 1444 ±	d by ti red in ubstitu unds h p. 41
	63	n	εA	25 40	30					Y	<u></u>	22.20	1 <u>8</u> 9	5 5	S	forme Measur PO su ompou [65, (g)	
		N-Me	m1	820 850 *	825	\int	$\widehat{]}$		I	$\rm NMe_2$	۳.	00 90	10 * 4 10 * 4	20 80 80 8	40 * 10 * 2	20 * 5	d to be t. § 1 dine; the c) p. 31
			C C	N N	6	– ·					cm	ية 28 سر	80 80 80 8 73 73	80,80,80,80 81,81,81,81 81,81,81,81	285 285 285	sidere solven d pyri und in 202, (f	
	1	NH retch	-1 ε ₄	0 3() 45	3(3430 30 3440 30 3450 55 3340 40	0 40 40				Ring		ج م م	PO]- <i>P</i>			ks con ed by stitute ids for (e) 2
		sti]	cm.	342) 346(3421 346(343(345(334(<i>u d-</i> ?	CHPh	сн.4			[†] Pea bscure P subs ner bar
			ing	a R R R	e.	с Ц	PO PO					[₄·NH₂	I. CH:	I. NO		00	lder. gion o nyl; _ ny oth (d) p
			К т 4	6	, c1	1 4 01					C,H	Ph C H		4P 3P	2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2	Shou Cl ₃) rei ⁷ h phe 2195,	
			No.	- 01	က	4,	0				No.	I	c) (n 4	0 0	r 8	$^{10}_{11}$	(CHC (CHC (c) D.

[1959] Substituents in Heteroaromatic Systems. Part III.

of the heterocyclic compound are probably not directly comparable with the benzenoid compound because of intramolecular hydrogen bonding. This band has been previously reported at 1640-1560,36,16,17 and at 1650-1590 cm.-1.3a Eight aromatic amines were shown ⁴ to absorb at 1631-1615 cm.⁻¹ (s).

A band at 1500-1478 cm.⁻¹ (35-110, but apparently absent in No. 6) for the methylamino-compound (Table 2; col. 3) is possibly the NH in-plane deformation, to which Hadži and Škrbljak ¹⁸ assigned a band near 1500 cm.⁻¹ for secondary aromatic amines.

The 1460-1400 cm.⁻¹ Region.—The methylamino-compounds show bands at 1460— 1457 cm.⁻¹ (30–45) [1459 \pm 2 cm.⁻¹ (40 \pm 10)] and 1425–1408 cm.⁻¹ (20–40) [1417 \pm 7 cm.⁻¹ (30 \pm 10)] (Table 2, cols. 4 and 5). These are assigned to the antisymmetrical and symmetrical N-methyl CH bending modes, respectively. The positions are higher than those $[1422 + 4, 1369 + 11 \text{ cm}^{-1}]$ for amides of the type Ar·NMe·CO·R¹ but close to those 1465-1442, 1414-1401 cm.⁻¹ for amides R·CO·NHMe.¹⁹

The dimethylamino-compounds absorb at 1449–1442 cm.⁻¹ (45–95) [1446 \pm 3 cm.⁻¹ (70 ± 20)] (Table 3, col. 2); this is probably also a methyl CH bending mode.

The 1400-1240 cm.⁻¹ Region.—Previous work ^{17,3a} had indicated that the CN stretching mode caused absorption at 1340-1250, 1350-1280, and 1360-1310 cm.⁻¹ for primary, secondary, and tertiary aromatic amines, respectively. Six aromatic amines absorbed ^{4c} at 1288—1276 cm.⁻¹ but *m*-chloro- and *m*-bromo-aniline each showed three bands at 1320 -1261 cm.⁻¹. A band at 1262-1241 cm.⁻¹ in seven secondary aromatic amines was assigned ¹⁸ to this mode, but the published curves all show a second band at higher frequencies.

All the compounds now studied show one or two strong or medium bands (Table 1, col. 4; Table 2, cols. 6, 7; Table 3, col. 3) which are assigned to the N-ring CN stretching mode.

The position of the band should depend on the electron-accepting character of the ring; when this is increased, greater mesomerism, greater double-bond character, and therefore a higher frequency, should result. This is shown for the *para*-substituted anilines (Table 1, nos. 1—15) for which the frequency varies, 1260-1303 cm.⁻¹; the intensity is (65-155) $[(105 \pm 30)].$

The *meta*-substituted anilines (except for the methyl, and possibly the nitro-compounds) show a band at 1329-1315 [1320 ± 6] cm.⁻¹ (20-90) [(50 ± 20)]; for several compounds a second band is shown at a lower frequency; this is similar to the ring-oxygen stretching frequency in *meta*-substituted anisoles and phenetoles;² the reason is unknown. As expected, the aminopyridines and 1-oxides all absorb at higher frequencies than aniline (Table 4), the intensity is (25-90); a weaker band at 1254-1250 cm.⁻¹ is also shown.

For the dimethylamino-compounds, the band occurs at 1380-1332 cm.⁻¹; for corresponding pairs, 16-76 [55 ± 23] cm.⁻¹ higher than in the amino-compounds. The intensity is (40-155) [(95 + 35)] except in the vinyl compounds (Nos. 3-5) where it is (220-240). For the benzenoid compounds a para-amino-group lowers the frequency and para-vinyl and -nitro-groups raise it as expected. All the heterocyclic compounds absorb at higher frequencies than dimethylaniline (Table 4).

Two bands of comparable intensity at 1342-1320 and 1315-1263 cm.⁻¹ are shown for all the methylamino-compounds; presumably the CN stretching mode is split by interaction with another mode. The mean frequency has been taken as that for the CN stretching mode; it is 20-50 [35 \pm 15] cm.⁻¹ higher than that for the corresponding amino-compound, and higher for each heterocyclic compound than for methylaniline (Table 4). Each component of the doublet has an intensity of (45-110) [(75 ± 15)] in methylamino-benzene and -pyridine, but (15-25) in methylaminopyridine 1-oxides.

 ¹⁶ Thompson, J., 1948, 328.
 ¹⁷ Colthup, J. Opt. Soc. Amer., 1950, 40, 397.
 ¹⁸ Hadži and Škrbljak, J., 1957, 843.

¹⁹ Miyazawa, Shimanouchi, and Mizushima, J. Chem. Phys., 1956, 24, 408; J. Chem. Soc. Japan, 1956, 77, 171.

The increments in Table 4 (except those for 2-methylaminopyridine and its 1-oxide; these exceptions are possibly explained by proximity effects) indicate that the electron-accepting power of the various rings is in the order: $Ph < 3P < 4PO \sim 4P \sim 2P < 2PO$, which is in good agreement with other evidence.²

 TABLE 4. Nitrogen-ring stretching bands. Increments in wave-numbers over those for the corresponding benzenoid compound.

	4P	3P	$\mathbf{2P}$	4 PO	2PO
Amino	46	14	49		72
Methylamino ^a	37	18	13	30	10
Dimethylamino	37	15	26	36	64

" Mean frequency of doublet used, see text.

The 1200—1100 cm.⁻¹ Region.—A band (Table 2, col. 8) for the methylamino-compound at 1157—1149 cm.⁻¹ (20—50) [1153 \pm 2 cm.⁻¹ (40 \pm 15)] and two bands (Table 3, cols. 5 and 6) for the dimethylamino-compounds at 1189—1154 cm.⁻¹ (20—130) [1171 \pm 14 cm.⁻¹ (60 \pm 35)] and 1143—1108 cm.⁻¹ (30—70) [1126 \pm 10 cm.⁻¹ (50 \pm 20)] (absent in No. 9) are probably due to N-CH₃ methyl rocking frequencies by analogy with those found for N-methylamides.¹

The 1100—900 cm.⁻¹ Region.—For dimethylamine the CNC antisymmetric and symmetric stretching modes occur at 1082 and 930 cm.^{-1.20} Bands probably due to these modes are found for the dimethylamino-compounds at 1063—1051 cm.⁻¹ (15—55) [1059 \pm 4 cm.⁻¹ (35 \pm 15)] and 953—942 cm.⁻¹ (25—170) [947 \pm 4 cm.⁻¹ (75 \pm 45)] (Table 3, cols. 7, 8). For certain amidines containing the ·NMe₂ group these bands were found ²¹ at 1082—1081 (ms) and 947—936 (m) cm.⁻¹.

For the methylamino-compounds a band tentatively assigned to the N-methyl CN stretching frequency (Table 2, col. 9) is found at 1070—1065 cm.⁻¹ (10—35) [1068 \pm 2 cm.⁻¹ (25 \pm 15)]; Hadži and Škrbljak found ¹⁸ this band near 1060 cm.⁻¹ and suggested that it was the CN stretching or the N-Me rocking mode. The NH₂ wagging mode ^{4c} near 1050 cm.⁻¹ is apparently too weak to be detected under our conditions.

Other Bands.—Nearly all the remaining bands could be assigned to the ring or other substituents present; many of them have been published, and references are given in Tables 1—3. The small proportion of bands which could not be correlated are given as footnotes in Tables 1—3.

Experimental.—See Part I² for details.

DYSON PERRINS LABORATORY, OXFORD. UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE.

[Received, April 9th, 1959.]

²⁰ Edsall, J. Chem. Phys., 1937, 5, 225.

²¹ Fabian, Delaroff, and Legrand, Bull. Soc. chim. France, 1956, 287.